Houjun Liu

normal equation

for small equations of Linear Regression, we can solve it using normal equation method.

Consider \(d\) dimensional feature and \(n\) samples of data. Remember, including the dummy feature, we have a matrix: \(X \in \mathbb{R}^{n \times \qty(d+1)}\) and a target \(Y \in \mathbb{R}^{n}\).

Notice:

\begin{equation} J\qty(\theta) = \frac{1}{2} \sum_{i=1}^{n} \qty(h_{\theta} \qty(x^{(i)}) - y^{(i)})^{2} \end{equation}

and \(h = X \theta\), we we can write:

\begin{equation} J(\theta) = \frac{1}{2} \qty(X \theta - y)^{T} \qty(X \theta - y) \end{equation}

We can take a derivative of this

Setting this to \(0\), taking the pseudoinverse:

\begin{equation} \theta = \qty(X^{T}X)^{-1} X^{T}y \end{equation}